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Abstract

In this paper we have studied a class of inhomogeneous spherical sym-

metric space-time possessing the varying cosmological term with quark and

strange quark matter.
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1 INTRODUCTION

It was suggested that the quark matter composed of comparable members of u,

d and s quarks may be the true ground state of matter which is stable at zero

pressure and temperature [Witten (1984), Farhi and Jaffe (1984), Modsen and

Haensel (1991)] in which case some or all neutron stars can turn out to be so-

called strange stars [Witten (1984), Farhi and Jaffe (1984), Modsen and Haensel

(1991), Haensel et al. (1986), Alock et al. (1986)]. If on the other hand strange
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matter is only metastable, the high pressure in the central regions of neutron

stars may lead to formation of hybrid stars, having strange matter cores.

The possibility of the existence of quark matter dates back to early seventies

Bodmer (1971) and Witten (1984) proposed two ways of formation of strange

matter, the quark-hadron phase transition in the early universe and conversion

of neutron stars into strange ones at ultrahigh densities.

Typically, strange quark matter is modeled with an equation of state (EOS) based

on the phenomenological bag model of quark matter, in which quark confinement

is described by an energy term proportional to the volume [Farhi and Jaffe (1984)].

In this model, quark are thought as degenerate Fermi gases, which exist only in

a region of space endowed with a vacuum energy density Bc (called as a bag

constant). Also, in the framework of this model, the quark matter is composed of

massless u, d quark, massive s quarks and electrons. In the simplified version of

this model, on which our study is based, quarks are massless and noninteracting.

Then we have quark pressure pq = ρq
3

(ρq is the quark energy density), the total

energy density ρ = ρq + Bc and total pressure p = pq − Bc. One therefore gets

equation of state for strange quark matter [Kapusta (1994)]:

p =
1

3
(ρ− 4Bc). (1)

In this study by considering the isotropic but inhomogeneous spherically symmet-

ric Lemaitre-Tolman-Bondi (LTB) universe, we have found the coefficients of the

LTB metric assuming the early universe possessed a time varying cosmological

term with quark and strange quark matter.

2 4D cosmological model

Let us consider the isotropic but inhomogeneous spherically-symmetric Lemaitre-

Tolman-Bondi metric of the form

ds2 = −dt2 + Y
′2dr2 + Y 2(dθ2 + sin2θdφ2), (Y = Y (r, t)) (2)
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(the prime denotes partial derivative with respect to the radial coordinate r), the

source of the metric being a material perfect fluid of energy density ρ(r, t) and

pressure P (r, t) plus the quantum vacuum.

The energy momentum tensor reads

Tab = (ρ+ P )µaµb +
(
P − Λ

8πG

)
gab, (3)

where ua = δta is the fluid four velocity.

Einstein field equations of the LTB metric Eq.(2) with the help of Eq.(3) takes

the form

ρ+ Λ =
1

Y 2Y ′
(Ẏ 2Y )

′
, (4)

P − Λ = − 1

Y 2Ẏ
(Ẏ 2Y )., (5)

Ÿ

Y
+
Ẏ 2

Y 2
− Ÿ

′

Y ′
− Ẏ Ẏ

′

Y Y ′
= 0, (6)

where the upper dot means partial derivative with respect to t and we have set

8πG = 1.

Introducing the change of variables as

Y = f
2
3 ,

Therefore Eq.(4) to Eq.(6) becomes

ρ+ Λ =
4ḟ ḟ

′

3ff ′
, (7)

P − Λ = −4f̈

3f
, (8)

and

f̈
′
f − f ′ f̈ = 0, (9)

respectively.

Eq.(9) can be expressed as

f̈ − F (t)f = 0, (10)

3



where F (t) is a function of t and does not depend on the radial coordinate.

Introducing f of the form

f(r, t) = R(r)T (t), (11)

in Eq.(10) we get

T̈ − FT = 0. (12)

By substituting the value of f from Eq.(11), Eq.(7) and Eq.(8) becomes

ρ =
4

3

(
Ṫ

T

)2

− Λ, (13)

and

P = −4

3

T̈

T
+ Λ, (14)

respectively.

To incorporate to this system, we used equation of state in the form of strange

quark matter Eq.(1).

To get an equation for T we assume that the equation of state Eq.(1) with the

help of Eq.(13) and Eq.(14) we get

T T̈ +
1

3
Ṫ 2 − [Λ +Bc]T

2 = 0. (15)

To solve Eq.(15) by considering the change of variables as

T = Z
3
4 , (16)

we get

Z̈ − 4

3
[Λ +Bc]Z = 0, (17)

To solve Eq.(17) we consider following two cases for Λ: Case (i) Λ = constant,

Case (ii) Λ = Λ(t).

3 Case (i): Λ = constant

For this case from Eq.(17) we get

Z1 = C1 cosh

2

√
Λ +Bc

3
t+ ψ1

 , (18)
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Z2 = C2 sinh

2

√
Λ +Bc

3
t+ ψ2

 , (19)

where C1, C2, ψ1 and ψ2 are arbitrary constants.

And therefore

Y1 = R
2
3 (r)C

1
2
1 cosh

1
2

2

√
Λ +Bc

3
t+ ψ1

 , (20)

Y2 = R
2
3 (r)C

1
2
2 sinh

1
2

2

√
Λ +Bc

3
t+ ψ2

 . (21)

It is observed that Eq.(20) does not present initial singularity, but solution

Eq.(21) has a singularity at t0 = −
√

3ψ2

2
√

Λ+Bc
. However both sets of solutions have a

final inflationary stage.

4 Case (ii): Λ = Λ(t)

Here we consider four different values for Λ(t): Λ(t) ∝ t−2, Λ(t) = λ0 + ctn−2,

Λ(t) = λ0 + ce−αt and Λ(t) ∝ ρ.

4.1 Case (a): Λ(t) ∝ t−2

We take

Λ(t) =
λ0

t2
, (22)

where λ0 is constant of proportionality.

By using Eq.(22), Eq.(17) become

Z̈ − 4

3
[Bc + λ0t

−2]Z = 0, (23)

and the general solution can be expressed as a combination of Bessel functions

Z = t
1
2

C3Ja0

2

√
−Bc

3
t

+ C4J−a0

2

√
−Bc

3
t

 , (24)

where a0 =
√

1
4

+ 4λ0
3

, C3 and C4 are arbitrary constants.

The behavior at the asymptotic limits depends on a0.
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For 0 < a0 one has the following

(i) when t→ 0 one obtains

Z ∼ C3t
1
2

+a0 + C4t
1
2
−a0 . (25)

(ii) when t→∞, one obtains the following asymptotic behaviour

Z ∼ cos(t+ ψ1). (26)

4.2 Case (b): Λ(t) = λ0 + ctn−2, (λ0 = −Bc (say), n 6= 2 )

By using above, case Eq.(17) becomes

Z̈ − 4c

3
tn−2Z = 0, (27)

and the general solution can be expressed as a combination of Bessel functions

Z = t
1
2

C5J 1
n

 4

n

√
−c
3
t
n
2

+ C6J−1
n

 4

n

√
−c
3
t
n
2

 , (28)

where C5 and C6 are arbitrary constants.

The behavior at the asymptotic limits depends on n.

For 0 < n < 2 one has the following

(i) when t→ 0 one obtains

Z ∼ C5t+ C6. (29)

One can choose C6 = 0 to have initial singularity at t = 0.

(ii) When t→∞, there follows

Z ∼ t
1
2
−n

4 cos(t
n
2 + ψ). (30)

For n < 0 one has the following:

(i) when t→ 0 one obtains Z ∼ t
1
2
−n

4 cos(t
n
2 + ψ).

(ii)when t→∞ one obtains z ∼ t.
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4.3 Case (c): Λ(t) = λ0 + ce−αt, (λ0, c and α are constant)

In this case, Eq.(17) becomes

Z̈ − 4

3

[
(B1 + ce−αt

]
Z = 0, (31)

where B1 = Bc + λ0.

The general solution can be expressed as a combination of Bessel functions

Z = C7J
4
α

√
B1
3

 4

α

√
−c
3
e
−αt
2

+ C8J−4
α

√
B1
3

 4

α

√
−c
3
e
−αt
2

 , (32)

where C7 and C8 are arbitrary constants, with

C8 =

−C7J
4
α

√
B1
3

(
4
α

√
−c
3

)
J
−4
α

√
B1
3

(
4
α

√
−c
3

) , (33)

in order to fix the initial singularity at t = 0.

The asymptotic behavior near the initial singularity, when t→ 0, is given by

Z ∼ t. (34)

When t→∞ and Λ→ λ0, one obtains the following asymptotic behavior

Y ≈ R
2
3 (r)eXt, (35)

where X =
√

Bc+λ0
3

.

Besides, from Eq.(21) we recover the same result in the far future.

For the particular case λ0 = −Bc the general solution of Eq.(31) is given by

Z = C7Jo

 4

α

√
−c
3
e
−αt
2

+ C8Y0

 4

α

√
−c
3
e
−αt
2

 , (36)

where Y0 is the Weber function of the second kind of zero order.

In the limit t→∞ and Λ→ 0 the final behavior of the solutions, obtained from

Eq.(34) are

Y ≈ R
2
3 (r)t

1
2 . (37)

The same result can be easily obtained from (17) by setting Λ = −Bc.
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4.4 Case (d): Λ(t) ∝ ρ

we consider

Λ = α1ρ, (38)

where α1 is constant of prportionality.

Then Eq.(13) and Eq.(14) reduces to

ρ =
4

3(1 + α1)

(
Ṫ 2

T 2

)
(39)

and

p = −4

3

T̈

T
+

4α1

3(1 + α1)

Ṫ 2

T 2
. (40)

By using Eq.(1), we reduce Eq.(39) and Eq.(40) as

T T̈ +
1− 3α1

3(1 + α1)
Ṫ 2 −BcT

2 = 0. (41)

We solve this equation by change of variables

T = Z
3(α1+1)

4 , (42)

By using Eq.(42), Eq.(41) becomes

Z̈ − 4Bc

3(α + 1)
Z = 0. (43)

On solving Eq.(43), one obtains

Z1 = C9cosh

(
2

√
Bc

3(α + 1)
t+ ψ1

)
(44)

or

Z2 = C10sinh

(
2

√
Bc

3(α + 1)
t+ ψ2

)
(45)

where C9 and C10 are arbitrary constants.

And therefore

Y1 = R
2
3 (r)C

(α+1
2

)
9 cosh(α+1

2
)

(
2

√
Bc

3(α + 1)
t+ ψ1

)
, (46)
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Y2 = R
2
3 (r)C

(α+1
2

)
10 sinh(α+1

2
)

(
2

√
Bc

3(α + 1)
t+ ψ2

)
. (47)

It is observed that Eq.(46) does not present initial singularity, but solution

Eq.(47) has a singularity at t0 = −ψ2

√
3(α+1)

4Bc
. However both sets of solutions

have a final inflationary stage.

To investigate the singular structure of the LTB metric Eq.(2), we can easily

calculate the curvature scalar < by resorting to change of variables Y = f
2
3 we

get

< = 2
f̈

f
+

4ḟ ḟ
′

3ff ′
+ 2

f̈
′

f ′
, (48)

and we solve it at the points where the coefficients of the metric Y
′2 and/or Y 2

vanish. To do this we insert Einstein equation Eq.(9) along with Eq.(11), Eq.(12)

and Eq.(13) in Eq.(48), obtaining

< = 4(Λ +Bc). (49)

5 Conclusion

In this paper we have found the coefficient of LTB metric by assuming the quark

and strange quark matter. We have discussed the behavior of strange quark mat-

ter for the different values of cosmological term Λ i.e. Λ is constant and Λ is

variable.

For the case (i) Λ = constant, it is observed that Eq.(20) does not present initial

singularity but Eq.(21) has singularity at t0 = −ψ2

√
3

2
√
Bc+Λ

and gives asymptotically

to exponential inflation - see Eq.(20), Eq.(21).

For the case (ii) Λ = Λ(t), we have discussed the four different cases: Case (a) to

Case (d). For the Case (c) and Case (d), it is observed that the solutions gives

asymptotically to exponential inflation - see Eq.(35), Eq.(46), Eq.(47). For the

case (c), it is also observed that for λ0 = −Bc their exist solution of the form

Y ∝ t
1
2 . Again for the Case (d), it is observed that Eq.(47) does not present
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initial singularity but Eq.(48) has singularity at t0 = −ψ2

√
3(α+1)

4Bc
.

It is observed that all the solutions we have derived for the above both the cases

contains an arbitrary function of the radial coordinate. All the solutions have sin-

gularity at t = 0, i.e. big-bang singularity except Eq.(20) and Eq.(47). Constant

as well as varying cosmological terms give rise asymptotically to exponential in-

flation i.e. Eq.(20), Eq.(21), Eq.(35), Eq.(46) and Eq.(47). None of the solutions

found has aspatially-homogeneous limit for t→∞.
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